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I. Objective

Thelong-termobjectiveof thisresearchis to developandapplymethodsto computethe

solarultraviolet(UV) spectralirradianceattheearth'ssurfaceandespeciallythroughoutthe

verticalextentof thetroposphereusinginformationto beprovidedby TOMS/ADEOS.The

broadphilosophyis to view theTOMS measurementsasaprobeof theradiativetransfer

propertiesof theearth'satmosphere,with emphasison theopticalcharacteristicsof the

troposphere.

II. Activity During theReportingPeriod

A. Validation of the TOMS Ground-Level UV Irradiance Data Product

During the summer of 1996 plans were made to conduct a workshop on validation of

the ground-level UV irradiance data product to be produced by scientists from Goddard

Space Flight Center using column ozone and reflectivities from TOMS. The workshop

was held on October 8-9. The participants who are in a position to supply ground-based

data for use in the TOMS validation effort will be providing additional written information

for use in updating the UV Validation Plan which was included as an Appendix to the last

Progress Report dated July 1996. The information to be provided includes the following:

(1) a description of the instrumentation, (2) the frequency with which data are obtained and

the GMT of the data, (3) the time lag between data collection and the availability of data for

use with TOMS, (4) the latitude and longitude of the measurements, (5) the elevation of the

observing sites, (6) a brief summary of calibration and quality control, and (7) a list of any

additional data collected at the site. The purpose of the activity in UV validation is to

identify a set of ground-based sites from which reliable data can be obtained on a timely

basis, to make the logistical arrangements needed to acquire this data, and to arrange for

this information to be brought to bear on the UV data product to be generated at Goddard

Space Flight Center.



3

Basedon informationpresentedattheworkshop,thenumberof operationalsitesfor

measuringsolarUV irradianceappearsto bemorethanadequatefor usein thevalidation

activity. Thedatasetsidentifiedby theworkshopattendeesaresummarizedbelow:

1.Japan- 4 Brewerinstrumentsobtainingspectraldata.

2. Europe- 14sitesdistributedbetweenlatitude40.5and69.7degreesNorth.

Instrumentationincludesbothspectral,multi-filter, andbroadbanddevices.

3. SouthAmerica- 8 sitesincludingonespectroradiometerandsevenmulti-filter

instruments.

4. Antarctica- 4 sitesincludingfour spectroradiometersoperatedby theUnitedStatesand

oneBrewerinstrumentoperatedby Japan.

5. Canada- 10Brewer instruments.

6. Russia- 1broadbandinstrumentoperatinginMoscow.

7. UnitedStates- A list of UV measurementeffortsin theU.S.A.appearsbelow.

- Departmentof Agriculture:30-40broadbandandmulti-filter instruments.

- EnvironmentalProtectionAgency:7Brewersiteswith thepotentialto grow to 21

sitesin thenearfuture.

- NationalOceanic& Atmospheric Administration: 4 broadband instruments associated

with the SURFRAD program and 10 broadband instruments associated with the ISIS

program.

The above list represents a modest fraction of the 250 to 400 UV measurement sites located

throughout the world. However, the availability and especially the quality of the data

produced from many of the unlisted sites is uncertain. By focusing the TOMS validation

effort on a subset of the sites listed above, we can have confidence in having access to data

of high quality.

Plans are also being made to accommodate the different classes of instrumentation

which will enter the validation effort. In principle the radiative transfer calculation done at

Goddard can produce the full wavelength-dependent solar spectral irradiance to any desired
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spectralresolution.Theground-basedmeasurements,of course,do nothavethis

capability. A viableapproachto thevalidationeffort is asfollows. For eachsitewhere

ground-baseddataarecollected,thecollocatedTOMSdata(ozone,reflectivity) canbeused

to computethesolarspectralirradiance.Thenthishighresolutioncalculationcanbe

degradedto matchthespectralcharacteristicsof eachobservinginstrument.The

informationneededto carryout thisprocedurecanbesuppliedby thescientistsin chargeof

theground-basedobservingsites.

B. Studiesin RadiativeTransferUtilizing TOMS Data

The major scientific effort supported under this grant addresses the question: How

uniquely can one infer the solar UV radiation field throughout the troposphere from

measurements of the radiance backscattered into space? The goal here is to estimatethe

tropospheric radiation field, including the influence of clouds. The relevance of be results

is to the calculation of photodissociation rates as functions of altitude in the troposphere for

use in chemical studies (although chemistry is not part of the proposed work).

Most previous efforts in radiative transfer, and all studies in the ultraviolet, have

assumed a one-dimensional, horizontally homogeneous atmosphere. For calculations only

of the UV spectral irradiance at the ground there appears to be little advantage in attempting

to treat the horizontally inhomogeneous, provided one treats the result as an average over

some horizontal area. The only major unknown involves whether or not the solar disk lies

in the clear or cloudy portion of a partly cloudy sky. However, if the concern is with the

radiation field throughout the depth of the troposphere, including horizontal variations, the

situation becomes more complex. For example, the radiation field in a locally clear region

of the troposphere will be influenced by the presence of a cloud located some distance

away. The precise definition of the term "some distance" depends on the mean free path of

a photon at the wavelength considered. This will be investigated as part of the research.
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Sincethelastprogressreporttheprimaryactivityhascenteredondevelopmentof a

radiativetransfercodewith thecapabilityto calculatetheradiancewhichemergesto space

(asmeasuredby TOMS) andtheradiationfield throughoutthedepthof anatmosphere

which ispartly cloudy (thatis, horizontallyinhomogeneous).This effort is partof the

Ph.D.researchof Mr. ZhengQu at theUniversityof Chicago.Mr. Qu is supportedasa

ResearchAssistantusingfundsfrom thisgrant. TheAppendixis anexcerptfrom Mr.

Qu's researchprospectus,requiredfor admissionto Ph.D.candidacy.Thismaterial

describesthemathematicalformulationof thenewmodel.

Whentheradiativetransfercodeis operational,wewill beableto computetheemergent

radiancemeasuredby TOMS for anyfractionalcloudinessin thefield of view. At present

therearerestrictionsontheallowedcloudgeometries,but thisconstraintwill beweakened

in futurework. In addition,we will beableto investigatesituationswhere,for examPle,

theTOMSfiled of view isclearbutwheretheedgeof acloudyregionis nearby. In this

casemultiplescatteringwouldallow thecloudto influencetheemergentradiancemeasured

by TOMSeventhoughthefield of view isclear. Theimportanceof suchscenarioswill be

amongthetopicsstudied.

Finally, wewill investigatethesolarUV radiationfield throughoutthetroposphere.

Thecentralissuehereinvolvesassessingthedegreeto whichradiancesmeasuredby

TOMS canconstrainthisradiationfield in ahorizontallyinhomogeneousatmosphere.

III. Plansfor theComingMonths

Attendeesof theUV ValidationWorkshopshouldbeprovidingwritten informationon

their datasets.This will beincorporatedinto arevisedTOMSUV ValidationPlanto be

completedin January1997(providedtheattendeesreplyaccordingto thetimetablesetat

theworkshop). In addition,developmentof thenewradiativetransfermodelfor a

horizontallyinhomogeneousatmospherewill continue.
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APPENDIX

MathematicalFormulationof aRadiativeTransferModel in anAtmospherewith

Variationsin theHorizontalDirection

Thefollowing pagesaretakenfrom theresearchprospectusof Mr. ZhengQu,agraduate

studentwhois supportedasaResearchAssistant by this grant. The mathematical

formulation will be the basis of a new radiative transfer model to be used in conjunction

with radiances measured by TOMS on ADEOS.



3.2 A 2-D Model for Horizontolly Inhomogeneous Atmosphere

In this section, we will discuss a simplified situation that one half the sky is clear while the

other is cloud covered (Fig 4). Still we divide the atmosphere into N+I layers, while half

the n th layer is occupied by cloud. For layers far away from the cloudy layer, say, layer

number m>n+l or m<n-1, radiation calculations will be the same as those in a multiplayer

homogeneous model We now divide the n th layer into two parts, part I is solely clear

and part II occupied by the cloud, as shown in Fig. This partition also applies to (n -1)th

and (n +l)th layer. We set X-axis starting at partitioning line in n th layer. Within each

part of the layers where partition applies, we take the media as homogeneously distributed

throught the entire part.

'z

"_ In t Z n

Xz(n + l)'Zn + l

Layer n- 1

÷zn, Zn

o _-x >0 Layern II

_'z(n+l) ' Zn+l

Layer n+l

x

Fig. 4

3.2.1 The Radiative Transfer Equation in Two Dimensions

The original RT equation for scattered intensity is in the form

dl(_,x,y,z) = -l(g,x, y,z) + -_ Pr (so,s)Fo e-'''_" + _ _4,,_ rPr (s' ; s)/(s' ;x, y,z)dco'
nerds

where

d
m=dgoV ;
ds

do)' is derivitive of solid angel, do)' = sin0' dO' d_';

(3.2.1.1)



g is the unit vector of the direction of scattered intensity, the direction is represented by

(o ,_ ), or (_t ,_ ), where rt = cos o. Fig 2 shows geometry of (o ,# );

go is the unit vector of the direction of incident sunlight. The direction is represented by

(-O-o,_0);

x _ is vertical optical depth (deEmed below) at the point of interest

,;°

We will discuss the equation in two dimensions x and z and solve the equation seperately

in two parts of the layer and couple them with lateral boundary conditions. For part I, we

define vertical optical depth x _ and horizontal optical depth x, to replace variables (x, z) in

the equation. The defination of x, is the same as previously deemed x,

x,_ = _ncdz (3.2.1.2)

while x is defined as

(3_2.1.3)

Rewriting the RT equation in two variables x _ and x, gives

l_--Z_ g2 cos_ 8I(g,_;x,,x,) _ gSl(IX,_;x,,x,) = I(g,_;x ,z,)

mr _?,_ dl.t, Pr(ll,,,, ; l.t,*)I(l-t' ,*' ;x_,x_)--_'Pr(-lXo,*o;lX,*)Fo e_''_'°
4re ,4x

(3.2.4)

To obtain the solution for this inhomogeneous equation, we first seek a particular solution

I" (lx,_;x ,) satisfying equation

_t
_'(_t,_;x ,)

d_z

1_ T

= I" (_t,¢;x ,)---4--_Pr(-p.o,¢o;Ix,O)Foe-"""*

_]_ T r2x rl

4r_ J0dd?'J-'dl't'Pr(l't' ,d:' ; _t, qb)I'(_t' ,qY ;x,)
(3.2.1.5)

as well as the vertical boundary conditions at x _ _ -0, where we assume the horizontally

homogeneous multilayer model applies. This particular solution therefore can be obtained



by anymethodwediscussedin Section3.1.Second,wetry to freda solution

l'(tx,_;x x,x ,) satisfying the homogeneous equation

_?'(_t,¢;_ x,_ z)
,]i- _t2 cost _?'(vt.¢;x.,_.) _ _t = T(_t,C;x.,z,)

bxx bx,
t"2Z el ,--'

t_, jd¢,j_,a_,e,.(v,,¢, , ,,_t,¢)l(V. ,¢ ;x_,x,)
42

It is easy to verify that solution

I(_t, ¢;x _,z. ) = 7(_t, ¢;_. ,x. ) + f (_t,¢;x,)

Satisfy the Eq(3.2.1.4).

3.2.2 Seeking the Homogeneous Solution I'(_t,O;x .,x ,)

(3.2.1.6)

(3.2.1.7)

As we did in discrete-ordinates method we discussed previously in Section 3.1.2.1, we

expand the solution in Fourier series with regard to _. It is reasonable to assume the

solution to be symmetric with regard to x-z plane, so the Fourier series have cosine terms

only,

_(I.t,(_ ;'_ _,x_ ) = _ I" (_t;x x,x, ) cos m_ (3.2.2.1)
m=0

Still, the phase function can be expanded in associated legendre polynomials,

N N

PT(_t''0';_ t '¢ ) = _ X t_ _mPT(p. )pro(p. )COS m(,'-0) (3.2.2.2)
txt.0 I_ m

Upon inserting Eqs. (3.2.2.1) and (3.2.2.2) into Eq (3.2.1.6) and noting that

2. f 0, m # n

S cos me cosn¢ de = _ (3.2.2.3)o n, m= n

O, n,_m+l_o'_ cos _ cos m_b cos nO?d_ (3 .2,2.4)

x/2, n=m+l

Eq(3.2.1.6) splits up into (N+I) coupled equations:



(l_"-_t 2/2) _I (IX'x ÷ Ix = I'(IX,x_,,x,)

_(l+8o,.)____r_i_- - f' , =(ix,)l=(gt,,x.,z=)dix
4 t=.,

(m=O ....

Note

(3.2.2.5)

I-'(gt,x x,x ,) = 11 (ix,x x,x =) (3.2.2.6)

If we take the first two terms in Fourier expansion (3.2.2.1), i.e., let N=I, the Eqs

(3.2.2.5) reduce to two eqquations. Noting

o
":' fi_o =_o

I -'1_1

_11 =lil l

pO (IX) = P0 (Ix) = 1

p O(Ix) = Pt (I t) = gt

P_'(Ix) = (1 - p2),n

the two equations are given by

A(gt) l_(Ix, x,:,'c =)+lx io(l.t, x x,.c =)= io(i.t,x, x,x, =)__ B(g ,ix)io(g, ,x x,x=)dix,

(3.2.2.7)

(3.2.2.8)

where

A(gt) = (1 - Ix2)|n / 2

BOx' ,_t) = -_z-(m o +re,Ix' Ix)

C(gt', Ix) = _ rlil I (1 - Ix'z )in(1 _ Ix2)u2
4

Applying Gauss's formula (3.1.2.1.7-8) in the Eqs (3.2.2.7) and (3.2.2.8) for the

integration terms, we find that Eqs (3.2.2.7) and (3.2.2.8) are replaced by 2N' coupled

first-order ordinary differential eqations,
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= I°(l.ti,zx,%:)- ___aiB(itj,iti)I°(iti,z;,,xz) (3.2.2.9)
i=--R'

A(itl) I°(g_,% _,x,)+ g _:: (g_,% x,%:)

= It(it_,% x,% :)- _F_,aiC(.gj,gl)I'(gi,'r. _,% ,)
]=-lq'

(i=-N" ,...,N')

where Iti and a_ are Gaussian points and weights respectively. For simplicity of solving

the Eqs (3.2.2.9), (3.2.2.10) we take two stream approximation, i.e.,j=-I and 1, and

N'=I. Note that

I.t, -- -it_, - 1 / x/'3

a, =a_, =1

After denoting

1° = I o(it,,z x,x,)

I ° = I °(it_,,x_,x,)

11+ "- I' (it, ,'¢ x,'l; x )

I'_ = I' (it_t,x x,Xz)

we have four equations in the form

I_++ It, _I °= 1°- [B(it,, It, )1o+ B(-It:, It, )1o]a(Itl)

A(-It, ) _-_- _ - It, _ 1o = 1o _[B(it, ,-it: )1+o+ B(-it, ,-It, )/o]

A(It,) I_ +It, _, =1'.-[C(It,,g,)II +C(-It,,It,)P_l (3.2.2.13)

3--_--I' = I t -[C(Itt,-It,)I_+ +C(-It,,-It,)I1] (3.2.2.14)A(-Itt) I ° -It, _: - _

(3.2.2.10)

0.2.2.11)

(3.2.2.12)

In part I,x • >0, apply Laplace transform with regard to x •



D 0,1
Z °'' = Z °'' (w,r-,)- _'o I_: (x,,r-,)e -'_" dr-, (3.2.2.15)

(integration is along imaginary axis)

to Eqs (3.2.2.11-14), where

i 2 =-1.

Eqs (3.2.2. ll-la) becomes

A(_,Ll)WZl+ - A(]-],I) I1 (r-x -" 0,'l_ z)+ _l, 1 _Z 0 = Z 0 -[B(_.],l, _l,l)Z O + B(-_/,,, _l,l)Z? ]

:. A(-_t,)wZ'_ - A(-g,)Z'_ (_, = 0:,) - _t,d-_-.Z_° = Z_° - [B(_.,,-_t,)Z+° +B(-_t,,-_t,)Z_°]

dz,+ z l
A(l.t,)wZ°+-A(l.t,)I°+(r-. = 0,r-,)+g, dr,, = Z_* -[C(_t"gt') + + C(-P't'_t')Zl-]

- d Zl _. zl _[C(_l.1,_].l. I )ZI+ -t- C(-].I.I,-].L 1 )Z!]
A(-g_)wZ ° -A(-g_)I°(r-x =0,r-,)-g_ dr-, - -

(3.2.2.17-20)

_Remrmnging terms yields

-2, -d,z_J O-J
where

z+:cz+°)z:(-)t,z+_ ' - Zi ' J+ t,I+° (r-x = O,r-,)) J- - t,I°_.(r-_< O,x,))

(l-B, -Aw) OoBa O)a= k.-Aw l-C ,b= -C 'and

A = A(gl) = A(-gl) = (I--'i.Ll)2"I/2/2

B 1 = B(gl,gl) = B(-gl,-gl) = _i_ r(ti_ 0 +_g12)/2

B 2 = B(gl,-gi) = B(-l.tl,l.tl) = _t(fi_ o -_1g12)/2

C : C(]lligl) : C(]ll,-gi) : C(-gl, _1.1) : C(-gl,-_l.l) : --
6

Seeking solutions of the form

Z± = G, (w)e'Cw_"

(3.2.2.21)

(3.2.2.22)



to thehomogeneousF-xts

dx, _) _ttk.-b -a
(3.2.2.23)

we find

(3.2.2.24)

which is a standard eigenvalue problem of order 4x4 determining the eigenvalues of p and

the eigenvectors G _..

"-'Because of the scpeeial structure of the matrix in Eq. (3.2.24), the eigenvalues occur in

pairs (+ p ), and the order of the algebraic eigenvalue problem [Eq. (3.2.24)] may be

reduced to 2x2 as follows. Breaking Eq. (2.2.24) into

aG + + bG _ = Ix _pG + (3.2.2.25)

bG+ + aG_ = -IxtpG_ (3.2.2.26)

and then adding and subtracting these two eqations, we find

(a - b)(G+ - G_) = _lp(G+ + G_) (3.2.2.27)

(a + b)(G+ + G_) = lx_p(G÷ - G_) (3.2.2.28)

Combining Eqs(3.2.2.27) and (3.2.2.28), we obtain

(a - b)(a + b)(G+ + G_) = _12p 2 (G+ + G_) (3.2.2.29)

Solving this eigenvalue problem of order 2x2 yields eigenvalues p and eigenvectors

(G. + G _), we then use Eq. (3.2.2.28) to determine (G. - G_ ).

The general solutions to Eqs (3.2.2.21) is hence in the form

where



,olu onto qs 3::21 l:!).o nc ono w ddo ndonlato boun o
con  on,Noww proc ,odo  o op c .,o,u on/:!) omboun,o
conditions.

3.2.3 Boundary Conditions

We have lateral boundary conditions

l(_t,O_;'c,= O,z)=/-(I.t,_;% = O,z)

_o °o

(3.2.3.1)

(3.2.3,2)

where ÷(Ix,d_;_-x,z ) is the scattered intensity in part II of the layer and _x = --x _ (hence in

part II _-,,>0 and Laplace transform with redard to _-_ applies). It is easy to verify that in

part II, corresponding equations become,

RT equation about a_(gt, d_;x-,,_-,) :

- 1-._-E-_cos_o_(!.t,_;%,%) +_ _(!.t,_;%,%) = ÷(Ix,_;x-.,÷,)
o_-, o-:3_-,

_[_r r2g i el _[_T

4rc J0d* j_ a_',,,,.(_t',,' ;_t,,l,_(_',,' ;÷,,÷,)-T-_PT(O.o,eOo;_,,)_'oe-'"""

and

-[(lx,_;÷x,'_,) = _'(I.t,_;÷,,x-:) + ÷'(l.t,_;÷,)

where

_'(gt,_;÷_,_-,) = ÷°(_t,_;_-,,_-,) + _ (g,_;_%,_-,)cosm_ ;

÷'(gt, d_;_,) is a particular solution to equation

(3.2.3.3)

(3.2.3.4)

(3.2.3.5)



_t
d_-_

After denoting

= ÷" (_t,_;%) - -_-/'_ (_to,_ o;_t,_)eo e';''

_r _o" J-f_¢'f' dlX'Pr(lX"¢" " ' '•_t,_)_ (_t ,4 ;_,)
4n 1

÷o = ÷o(Ix,,%,_,)

= ÷o(_t_,,%,%)

#+ = ÷'(0,,,_x,_,)

= ÷_(_t__,_x,% )

we obtain

, ,-a(_t,) ÷+°+rt, _, =÷_-[C-<_,,_t,_ +C(-rh,_t,)__ _]

_--_---÷'=÷'-[_(_,,-_t,)÷+ _+e(-_,,-_h_!]_A(_l.tl ) ÷_o__tl _-_ _ _

_A(_t i ) ______7÷+1+ _t ____..÷o o

!÷o =t o -[_(_tl,-_t,)÷_ +_(-_t,,-rt,)__ °]-A(-_t_) _ -lx_ _'_ _ _

where

. 2\1;2
A=A(I.t_)=A(-I.t_)=(1-_) /2

/_ = 8(_h,rtl) =/_(-l_,-_t,) = _r(_o +_h_)/2

_ = 8(lx_ ,-Ix_ ) = B(-IX_, Ix_) = _r (_o - _tl-t_ 2) / 2

o = _(_t,, _t,) = c--(_t,,-rt,) = _(-rt,, rt,) = _(-_t,,-_t,) =

After Laplace transform with regard to _-_

V ÷°'t (_- ,c,- )e-_, d%

_ 1 ;- o.1

(integration is along the imaginary axis)

Eqs (3.2.3.7-10) are transformed into

_T_'_

6

(3.2.3.6)

(3.2.3.7)

(3.2.3.8)

(3.2.3.9)

(3.2.3.10)



a_, tf__J:_/-d -<Jt,i__J-V, kK_J

where

_÷ - , __ = , K+ = t÷+_@" K_

1 (:o Dc=[. Aw 1-_- , d=

As we did in part I, the general solutions to Eqs (3.2.3.13) are in the form

= 2__as tW)/H .(w)_ +"" _- S=l \ -I" I
.-

where

qs (w) and H±i (w) are eigenvalues and eigenvectors of equations

__1 (:d d_H÷)=q(H+).
_t I -c _ H_

and (_!)is a particular solution to Eqs (3.2.3.13).

(3.2.3.13)

(3.2.3.14)

Considering lateral boundary conditions (3.2.3.2) and Eqs (3.2.1.7),(3.2.2.1),(3.2.3.4-5),

we denote

°l= i,. oj

Rewriting the lateral boundary conditions (3.2.3.1) in the form

l'(_t,_;x x = O,z)+l'(I.t,O?;z) = _'(lx,¢;_x = 0,z)+÷'(IX,_;z) (3.2.3.18)

we then denote



_'+=C÷"(:)) =C:'(:)J' = k÷"-(z)Yi'_ =' t:-(z)J

{':(, :.:_..=o) "+°(_:,:)l.:_-o)i+= 11 = :, +(_:,z_,=o ÷+'@:,z)l,.o +t+- i+;

¢_-_<,:,:>i,.=o]:e_-:.:_,:o_+.
i_ :t,_,(,:.z)l.__oj={+,_(÷:.:)l.=oj t_-I'_

(3.2.3.19)

(3.2.3.20)

(3.2._r23)

(3.2.3.24)

(3.2.3.25)

(3.2.3.26)

-k-Tzii_j: -_-_(-f -eLi_ J _, CL_J

_Cti_J-t.I°-:'t::)}-_ll( -gh -g_,.t.I_J t.I--l-JJ-_lt, L_J

where

13= _ _ nsk_ i_: is the extinction coefficient for part I,
k=s,a j=m,c.a

= _ _ _ik _:ik is the extinction coefficient for part II,
k=s,a j=m,c,a

('1ol°! ('o°De'-
C-1 "f=

g= h= .

Discretizing F_xlS(3.2.1.5) and (3.2.3.6) yields

d ¢I+_ I]1 (e f _¢I+_+ _SA(fl+_Eet_f_(,_,._.,.l,_,_'kI* _J=_ -f -eJkI:J _-Tta_J°

d ¢'+_ t]' ¢g h Y][i)-tI'A/_+)Fo et-#<''*')_'l,_'*-D-;ty_J=_t-h -gLt_j _t,t -:

where

I" (+IX t,d?; z) = I_ (z) + I_ _(z) cos_, (3.2.3.21)

÷ (_gt,g};z) ÷+ (z)+÷:t(z)cos_ (3.2.3.22)

Considering Eqs (3.2.2.11-14) and (3.2.3.7-10) at _'x = 0, x_, = 0 and combining with

Eqs (3.2.3.16-17) and (3.2.3.19-20) yields



where

D.+ k, C(I-to,l.tt)/n J''Q- k -C(I-to,l-t,)/_ J'

= (_o(-.o,.,)/(2.)_` e (--_(-.o,-_t,) / _.))% t. e(_o,_t,)/rc ) -=k -_(_to,_t,)/ "

It is easily veryfied that the particular solutions t'+, and I'± are in the form

4 11 A+j p_13_ -
(:::) = i_=t J(A__) +(A:) e-°''_'*

(:::) = i_= q, (Fi-.+:)"'t_' + (_+ _e "_'_'°kr'_j

where

_'x "") °°'l;x ---->oo :

"I'±(z = z.)="-zI':_(z = z.)

"-r±(z = z,,)="-_t'±(z = z.)

"l'+(z = z,,.t)="+'I'±(z = z.+,)

"t'+ (z = z,.+_)="'_ t'± ( z = z,.+.)

are constants to be determined by vertical boundary conditions at

where super/subscription "n ", "n +1", "n -1" denote layer number.

N

A±,F_ are constants to be determined by equations

1 1 e f X+ . A ('_2+'_ n, _[l_,._,.l/.o

i.to (_:/='_t (_f "_- /"r--'. 'roe-eAA_ ) It, k -)

1 (I-'+) h "_I'+) A (_F.'_Ee[t__.,.,/_, *

Pi and _,A_j j are eigenvalues and eigenvectors of equations

IrA+'_ 1 (" e f yA+j_

PlA_J =_/-f -eJ_A_,J'

(3.2.3.27)

(3.2.3.28)

(3.2.3.29)

(3.2.3.30)

(3.2.3.31)

(3.2.3.32)

(3.2.3.33)

(3.2.3.34)

(3.2.3.35)



_¢i and_F_i) are eigen values and eigenvectors of equations

(3.2.3.36)

The solutions to Eqs (3.2.3.37) are in the form

= _z + + -13z/Ixo --{k/Ix,

where

ri and _T__) are eigenvalues and eigenvectors of equations

(_ -_)r T_ _, k-(h-0 -_,-e),_T_,;

N i are constants to be determined by vertical boundary conditions:

nt--I"I(l_,_;x x = 0,x_ = x _.)= 1(_t,q,,x x = 0,x_ = x _,),

n . n+l 'l_x/(J.t,d?,'cx=0,x_='Cz(,+t))= 1(_,_; =0,'_z='_,(,+ 0)

or

"L(z = z,)='-'i±(z = z_),

"L(z _+'-= z.+,)= l_(z= z.+,).

where sub/superscript "n" denotes n th layer.

1
a±i are constants determined by equations

(3.2.3.37)

(3.2.3.38)

(3.2.3.39)

Combine Eqs (3.2.3.23-28), we obtain equations about i± :

d i+

= _t, _.-(h-f) -(g-e)J_i_J
%. J

h 4 1] A+j ep,_ , ~
-15(_(-ef -ejf)+ t_(gl_,[.-h -g3____ _(A_,3 +_A+)e-""*)[A_J

1_2A ("+ _F e t-_'_-'''lw*
I,.-_J ° -_A (_:_: et-_'-'''u'*



g-e(13 -_)13p St, aLs !_, k.-(h- 10

h-,
J

f _+t_( g

-eJ IXl t.-h
(3.2.3.44)

2
a+ are constants determined by equations

_(13 _ _)__o_o{a! / = _____f g -e h- f "_'a2+'_IX, t,-Ol-f) -(g-e)Jl_al_.J

-e) _, t-h -gS)tX_) --_-,t,_-J ot_, t-r

(3.2.3.44)

3
a± are constants determined by equations

h-f a3+ 013A _+ _t--_._,l/,,

_ _)______¢a3"_ : ____¢ g-e _(g _ e)_a3_)____l/W_/Foe-(13 _ot,a_-) _, t-(h-f)

Once i± are determined, which can be rewritten in the form

(3.2.3.46)

we then have J±,K± in the form

10

J± =2_,D±: ,
j=l

(3.2.3.47)

18

K+ = ___ c±je °:' •

j=l

(3.2.3.48)

Now Solving Eqs (3.2.2.21) and (3.2.3.13) to get particular solutions

10

Z'_ = J± = 2._o±stwje
j=l

18

Z; = '_ m+s(w)e'::
j=l

Hence,



I [.. 4 I0

i" [ Dj (w)Gij (w)e picw}_z

jffil

1 _ _qc x

- 2ra ___L.__,Ei(w)n±j(w) e_'{'}" +_2m±i(w)e'f" ]e-'dw_,.,

Coefficients D_(w), Ej(w) axe determined by vertical boundary conditions:

"÷(I_,{P;_-_,_-,= _-_.)=_-'÷(!_,_;_-,,_-, = _,)

"l(_,{I};'c_,x, = x _{_})="+_I(g,{l};x_,x _ = 'c,{_,})

or

"t±(_-.,_-, = _D='-_t±(_.,_ -, = _-:_)

"I± (_ .,X, = "c,{.+_})=_+_ I± (x :,'c: = _ :{.+o)

"t+ (÷_,÷: "+_

Finally, we have intensifies

I(__.rt,,_,,xx,x ,) = I? ('c,,_ =) + tl (_ ,,_ z)cos_}

÷(_+_,,_,r,.x,_-,)= ÷o(_.,__)+÷_(_-,,_,)cos_

.o.

(3.2.3.49)

(3.2.3.50)

(3.2.3.51)

(3.2.3.52)

(3.2.3.53)

(3.2.3.54)

(3.2.3.55)

(3.2.3.56)

(3.2.3.57)

(3.2.3.58)


